Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Connect LangDB seamlessly using the OpenAI Client SDK for Python, Node.js, or cURL with minimal code changes.
LangDB seamlessly integrate with OpenAI Client.
Install OpenAI Client SDK
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
"temperature": 0.8
}'
Connect LangDB to CrewAI using OpenAI-compatible setup to enhance LLM workflows with full tracing and streamlined monitoring.
npm i ai
npm i @langdb/vercel-provider
import { generateText } from 'ai';
import { createLangDB } from '@langdb/vercel-provider';
const langdb = createLangDB({
apiKey: process.env.LANGDB_API_KEY,
projectId: 'your-project-id',
});
export async function generateTextExample() {
const { text } = await generateText({
model: langdb('openai/gpt-4o-mini'),
prompt: 'Write a Python function that sorts a list:',
});
console.log(text);
}
pip install crewai
from crewai import LLM
project_id = "xxxx" ## LangDB Project ID
default_headers = {"x-project-id": project_id}
os.environ["OPENAI_API_KEY"] = (
"xxxx" ## LangDB API Key
)
llm_writer = LLM(model="gpt-4o-mini",
base_url=api_base,
extra_headers=default_headers)
# Your CrewAi code here
pip install llama-index openai
import os
from llama_index.llms import openai
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core import Settings
from llama_index.llms.openai import OpenAI
Settings.llm = OpenAI(
base_url=os.getenv("OPENAI_API_BASE"),
api_key=os.getenv("OPENAI_API_KEY"),
model="gpt-4o-mini"
)
documents = SimpleDirectoryReader("data").load_data()
## Rest of your LlamaIndex
Connect LangDB to LangChain using OpenAI-compatible setup to enhance LLM workflows with full tracing and streamlined monitoring.
LangDB integrates seamlessly with popular libraries like LangChain, providing tracing support to capture detailed logs for workflows. Below is a complete example of using LangChain with LangDB.
from langchain_openai import ChatOpenAI
api_base = "https://api.us-east-1.langdb.ai"
api_key = "xxxx" # LangDB API Key
default_headers = {
"x-project-id": "xxxxx", ### LangDB Project ID
}
llm = ChatOpenAI(
model_name='gpt-4o' ,
temperature=0.3,
openai_api_base=api_base,
default_headers=default_headers,
disable_streaming=True )
# Your LangChain Code here
Check out full examples in the samples.
Use LangDB with Mem0 to store memories, embed text, and streamline LLM interactions across scalable applications.
LangDB seemlessly integrate with Mem0.
Check out the Mem0 documentation for more information.
from mem0 import Memory
from dotenv import load_dotenv
load_dotenv()
import os
langdb_api_key = os.getenv("LANGDB_API_KEY")
langdb_project_id = os.getenv("LANGDB_PROJECT_ID")
base_url = f"https://api.us-east-1.langdb.ai/{langdb_project_id}/v1"
config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o",
"temperature": 0.0,
"api_key": langdb_api_key,
"openai_base_url": base_url,
},
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-ada-002",
"api_key": langdb_api_key,
"openai_base_url": base_url,
},
}
}
m = Memory.from_config(config_dict=config)
result = m.add(
"I like to take long walks on weekends.",
user_id="alice",
metadata={"category": "hobbies"},
)
print(result)
Access xAI models through LangDB’s API using OpenAI SDK
LangDB provides first class support for xAI models.
You can use to run the xAI models.
Access Gemini models through LangDB’s API using OpenAI SDK
LangDB provides first class support for Gemini models.
You can use to run the Gemini models.
Access FireworksAI models through LangDB’s API using OpenAI SDK
LangDB provides first class support for FireworksAI opensource hosted models.
You can use to run the xAI models.
Access OpenRouter models through LangDB’s API using OpenAI SDK
LangDB provides first class support for OpenRouter models.
You can use to run the xAI models.
Integrate Smithery's EXA MCP server into LangDB to enhance AI workflows with real-time, tool-driven interactions via WebSocket.
LangDB supports MCP servers provided by .
This particular example is for .
Access Amazon Bedrock models through LangDB’s API using OpenAI SDK
LangDB provides first class support for Bedrock models.
You can use to run the Bedrock models.
Access TogetherAI models through LangDB’s API using OpenAI SDK
LangDB provides first class support for TogetherAI opensource hosted models.
You can use to run the xAI models.
from openai import OpenAI
from dotenv import load_dotenv
import os
import base64
import json
from urllib.parse import quote
load_dotenv()
def urlEncode(data_dict):
"""Convert dictionary to base64 and then URL encode it"""
return quote(base64.b64encode(json.dumps(data_dict).encode()).decode())
config = {
"exaApiKey": os.getenv("EXA_API_KEY")
}
config_str = urlEncode(config)
web_socket_url = "wss://your-mcp-server.com/ws"
extra_body = {
"mcp_servers": [
{
"server_url": f"{web_socket_url}?config={config_str}",
"type": "ws"
}
]
}
client = OpenAI(
api_key=os.getenv("LANGDB_API_KEY"),
base_url=os.getenv("LANGDB_API_URL")
)
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "what is langdb?"}],
extra_body = extra_body
)
print(response)
Connect LangDB to LangChain using OpenAI-compatible setup to generate embeddings and store them in Supabase for efficient data retrieval.
LangDB integrates AI models like OpenAI to generate embeddings and store them in Supabase for efficient data retrieval.
Go to Supabase and create a new project.
from openai import OpenAI
from dotenv import load_dotenv
from supabase import create_client, Client
import os
load_dotenv()
api_key = os.getenv("LANGDB_API_KEY")
project_id = os.getenv("LANGDB_PROJECT_ID")
base_url = f"https://api.us-east-1.langdb.ai/{project_id}/v1"
client = OpenAI(
base_url=base_url,
api_key=api_key,
)
text = "Hello LangDB"
response = client.embeddings.create(
model="text-embedding-ada-002",
input=text,
)
embedding = response.data[0].embedding
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "xai/grok-2",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "gemini/gemini-1.5-flash-8b",
"messages": [
{
"role": "system",
"content": "You are helpful assistant",
},
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
]
}'
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "fireworksai/deepseek-r1",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "openrouter/aion-1.0-mini",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "bedrock/command-r-v1:0",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "togetherai/DeepSeek-V3",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
Access Anthropic models through LangDB’s API using OpenAI SDK
LangDB provides first class support for Anthropic models.
You can use OpenAI SDK to run the Anthropic models.
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "claude-3-5-sonnet-20240620",
"messages": [
{
"role": "system",
"content": "You are helpful assistant",
},
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
]
}'
Access DeepInfra models through LangDB’s API using OpenAI SDK
LangDB provides first class support for DeepInfra opensource hosted models.
You can use OpenAI SDK to run the xAI models.
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "deepinfra/phi-4",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
],
}'
pip install openai
npm install openai
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
api_base = "https://api.us-east-1.langdb.ai" # LangDB API base URL
api_key = "xxxxx" # Replace with your LangDB token
default_headers = {"x-project-id": "xxxxx"} # LangDB Project ID
client = OpenAI(
base_url=api_base,
api_key=api_key,
)
response = client.chat.completions.create(
model="gemini/gemini-1.5-flash-8b",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"}
],
stream=False
)
print(response.choices[0].message.content)
// Please install OpenAI SDK first: `npm install openai`
import OpenAI from "openai";
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
async function main() {
const completion = await client.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }, {"role": "user", "content": "Hello"}],
model: "gemini/gemini-1.5-flash-8b",
}, { headers: defaultHeaders });
console.log(completion.choices[0].message.content);
}
main();
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="gpt-4o", # Use the model
messages=[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "gpt-4o-mini", // Use the model
messages: [{"role": "user","content": "Hello?"}],
}, { headers: defaultHeaders });
// Rest of Your Code
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="xai/grok-2", # Use the model
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "xai/grok-2", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code\
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="fireworksai/deepseek-r1", # Use the model
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "fireworksai/deepseek-r1", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code\
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="openrouter/aion-1.0-mini", # Use the model
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "openrouter/aion-1.0-mini", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code\
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="bedrock/command-r-v1:0", # Use the model
messages=[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "bedrock/command-r-v1:0", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="togetherai/DeepSeek-V3", # Use the model
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "togetherai/DeepSeek-V3", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code\
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
api_base = "https://api.us-east-1.langdb.ai" # LangDB API base URL
api_key = "xxxxx" # Replace with your LangDB token
default_headers = {"x-project-id": "xxxxx"} # LangDB Project ID
client = OpenAI(
base_url=api_base,
api_key=api_key,
)
response = client.chat.completions.create(
model="claude-3-5-sonnet-20240620",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"}
],
stream=False
)
print(response.choices[0].message.content)
// Please install OpenAI SDK first: `npm install openai`
import OpenAI from "openai";
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
async function main() {
const completion = await client.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }, {"role": "user", "content": "Hello"}],
model: "claude-3-5-sonnet-20240620",
}, { headers: defaultHeaders });
console.log(completion.choices[0].message.content);
}
main();
from openai import OpenAI
client = OpenAI(
base_url="https://api.us-east-1.langdb.ai" # LangDB API base URL,
api_key=api_key, # Replace with your LangDB token
)
# Make the API call to LangDB's Completions API
response = client.chat.completions.create(
model="deepinfra/phi-4", # Use the model
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={"x-project-id": "xxxxx"} # LangDB Project ID
)
import { OpenAI } from 'openai'; // Assuming you're using the OpenAI Node.js SDK
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
const response = await client.chat.completions.create({
model: "deepinfra/phi-4", // Use the model
messages: [{"role": "user","content": "What are the earnings of Apple in 2022?"}],
}, { headers: defaultHeaders });
// Rest of Your Code\
Access DeepSeek models through LangDB’s API using OpenAI SDK, enabling fast, reliable AI performance across platforms.
LangDB provides first class support for DeepSeek AI’s models.
You can use OpenAI SDK to run the deepseek models.
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
api_base = "https://api.us-east-1.langdb.ai" # LangDB API base URL
api_key = "xxxxx" # Replace with your LangDB token
default_headers = {"x-project-id": "xxxxx"} # LangDB Project ID
client = OpenAI(
base_url=api_base,
api_key=api_key,
)
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"}
],
stream=False
)
print(response.choices[0].message.content)
// Please install OpenAI SDK first: `npm install openai`
import OpenAI from "openai";
const apiBase = "https://api.us-east-1.langdb.ai"; // LangDB API base URL
const apiKey = "LANGDB_API_KEY"; // Replace with your LangDB token
const defaultHeaders = { "x-project-id": "xxxx" }; // LangDB Project ID
const client = new OpenAI({
baseURL: apiBase,
apiKey: apiKey,
});
async function main() {
const completion = await client.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }, {"role": "user", "content": "Hello"}],
model: "deepseek-reasoner",
}, { headers: defaultHeaders });
console.log(completion.choices[0].message.content);
}
main();
curl "https://api.us-east-1.langdb.ai/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LANGDB_API_KEY" \
-X "X-Project-Id: $Project_ID" \
-d '{
"model": "deepseek-reasoner",
"messages": [
{
"role": "user",
"content": "Write a haiku about recursion in programming."
}
]
}'